El Lápiz . Una historia escrita con Grafito


Lápiz: Etimología.

Mucho antes de inventarse el lápiz, existían los estiletes, usados por los «escribas», consistente en una delgada varilla de metal que dejaba una marca ligera pero legible en el papiro, algunos estaban hechos de plomo, razón por la que todavía se llama en ingles «lead» traducido «plomo» al núcleo del lápiz, aunque en realidad están hechos de grafito no tóxico. Por otra parte, hasta que el lápiz se popularizó, el uso de de plumas de ganso para la escritura con tinta era el negocio común.

Continuar leyendo «El Lápiz . Una historia escrita con Grafito»

Lanzado el satélite venezolano VRSS-2 (Larga Marcha CZ-2D)


Lanzado el satélite venezolano VRSS-2 (Larga Marcha CZ-2D)

El 9 de octubre de 2017 a las 04:13 UTC se lanzó un cohete Larga Marcha CZ-2D desde la rampa LC-43/603 (SLS-2) del centro espacial de Jiuquan con el satélite venezolano VRSS-2 Antonio José de Sucre. Este ha sido el 63º lanzamiento orbital de 2017 (el 58º exitoso) y el noveno de China este año, además de ser el 84º lanzamiento de un cohete Larga Marcha. Es la primera misión del CZ-2D después del fallo parcial que sufrió este lanzador el 30 de diciembre de 2016. La órbita heliosíncrona inicial fue de 629 x 655 kilómetros y 98º de inclinación.

Lanzamiento del VRSS-2 (Xinhua).
Lanzamiento del VRSS-2 (Xinhua).

VRSS-2 Sucre

El VRSS-2 (Venezuelan Remote Sensing Satellite) o 委内瑞拉遥感卫星二号 (Wěinèiruìlā Yáogǎn Wèixīng èr hào), bautizado como Antonio José de Sucre, es un satélite de observación de la Tierra de 942 kg construido por CAST (China Academy of Space Technology) para el gobierno de Venezuela usando la plataforma CAST2000. Posee una cámara de alta resolución (HRC) capaz de realizar imágenes de la superficie de la Tierra con una resolución de un metro en modo pancromático (blanco y negro) y de cuatro metros en modo multiespectral. También posee una cámara infrarroja (IRC) con una resolución entre 30 y 60 metros. Tiene unas dimensiones de 2,1 x 1,75 metros y una envergadura de 7,9 metros con los dos paneles solares desplegados. El VRSS-2 emplea la misma tecnología del VRSS-1 Francisco de Miranda, lanzado el 29 de septiembre de 2012, y está gestionado por la EBAE (Agencia Bolivariana de Actividades Espaciales). El tercer satélite venezolano observará la Tierra desde una órbita heliosíncrona de 645 kilómetros de altura y 98º de inclinación. Su vida útil se estima en cinco años.

VRSS-2 (Xinhua).
VRSS-2 (Xinhua).

sas
El VRSS-2 (CCS/Lisbeth Toro).

Cohete Larga Marcha CZ-2D

El Larga Marcha CZ-2D (长征二号丁, Cháng Zhēng2D) o Long March 2D (LM-2D) es un cohete de dos etapas que tiene capacidad para poner 1300 kg en una órbita heliosíncrona (SSO) de 700 km de altura o unos 3300 kg en LEO. Quema propergoles hipergólicos en sus dos etapas. A pesar de su nombre, el CZ-2D es básicamente una versión de dos etapas del CZ-4 desarrollado inicialmente por SAST (Shanghai Academy of Space Technology) para lanzar la familia más avanzada de los satélites espías de la serie FSW. En 2003 se introdujo una nueva versión con una segunda etapa rediseñada, que es la que está actualmente en servicio.

lm-2d_pic
Detalles del CZ-2D: 1: Cofia, 2: Carga útil, 3: Adaptador con el lanzador, 4: Parte frontal del tanque de oxidante de la segunda etapa, 5: Aviónica, 6: Sección interfase, 7: Tanque de oxidante de la segunda etapa, 8: Sección intertanque, 9: Tanque de combustible de la segunda etapa, 10: Motor vernier de la segunda etapa, 11: Motor principal de la segunda etapa, 12: Sección interfase, 13: Estructura interfase, 14: Tanque de oxidante de la primera etapa, 15: Sección intertanque, 16: Tanque de combustible de la primera etapa, 17: Sección de transición trasera, 18: Aleta estabilizadora, 19: Motor de la primera etapa.

El CZ-2D tiene una masa total al lanzamiento de 232,25 toneladas, un diámetro de 3,35 metros y una longitud de 41,056 metros. La primera etapa (L-180 en la versión antigua o L-182 en la nueva) tiene una masa de 192,7 toneladas (183,2 toneladas de combustible), una longitud de 27,910 metros y es muy similar a la primera etapa del CZ-4. Hace uso de un motor YF-21C (DaFY 6-2) de cuatro cámaras que quema tetróxido de nitrógeno y UDMH con 2961,6 kN de empuje en total (740,4 kN cada cámara al nivel del mar) y unos 256 segundos de impulso específico (Isp). El motor YF-21C está compuesto por cuatro motores YF-20C. El control de vuelo de la primera etapa se consigue mediante el giro de los motores.

Motor YF-21B (CALT).
Motor YF-21C (CALT).

La segunda etapa (L-53), basada en la del CZ-4, tiene una masa de 52,7 toneladas de combustible y una longitud de 10,9 m. Emplea un motor YF-24C con un Isp de unos 294 s, dividido en un motor principal YF-22B (DaFY 20-1) de 742,04 kN y uno vernier con cuatro cámaras YF-23 (DaFY 21-1) de 47,1 kN de empuje en total. El empuje total de la segunda etapa es de 789,14 kN. El tamaño de la cofia es de 6,983 x 3,35 metros. El CZ-2D puede usar dos tipos de cofia, una con un diámetro de 2,9 metros y otra de 3,35 metros.

Motor YF-24 (CALT).
Motor YF-24C (CALT).

1
Familia Larga Marcha de primera generación (SGWIC).

Características de la familia Larga Marcha (CGWIC).
Características de la familia Larga Marcha (CGWIC).

Etapas de un lanzamiento típico del CZ-2D:

  • T-120 minutos: activación del equipo de tierra.
  • T-100 min: activación del sistema de control y las APUS.
  • T-70 min: activación del sistema de telemetría.
  • T-60 min: introducción de los datos de lanzamiento actualizados.
  • T-40 min: presurización del sistema de propulsión.
  • T-30 min: retirada de los brazos de la torre de servicio.
  • T-2 min: el cohete pasa a potencia interna.
  • T-1 min: separación de los umbilicales.
  • T-30 s: activado del sistema de control de propulsión.
  • T-0 s: ignición. T+17 s: cabeceo del cohete.
  • T+155,5: apagado de la primera etapa.
  • T+156,7 s: separación de la primera etapa.
  • T+186,7 s: separación de la cofia.
  • T+323,6 s: apagado del motor principal de la segunda etapa.
  • T+728,6 s: apagado de los motores vernier de la segunda etapa.
  • T+773,6 s: separación del satélite.

Versión actual del CZ-2D (mil.news.sina.com.cn).
Versión actual del CZ-2D (mil.news.sina.com.cn).a la izquierda.

El Centro de Lanzamiento de Jiuquan (酒泉卫星发射中心/JSLC) se encuentra situado en la provincia de Gansu, en pleno desierto de Gobi. Jiuquan es, después de Wenchang (文昌卫星发射中心/WSLC), el centro espacial más moderno del país. No obstante, Jiuquan nació en 1958 como el primer centro de pruebas de misiles balísticos de China. En 1960 China lanzó por primera vez desde Jiuquan un misil Dongfeng 1 (DF-1, una versión del misil soviético R-2) y en octubre de 1966 lanzó un misil DF-2A con una bomba atómica. A partir de 1967 China usó Jiuquan para probar misiles DF-2, DF-3 y DF-4. El 24 de abril de 1970 un cohete Larga Marcha CZ-1, basado en el misil DF-3, puso en órbita el primer satélite artificial chino, el Dongfang Hong 1. En 1999 China comenzó la construcción del cuarto complejo de lanzamiento o Área 4 en Jiuquan, que actualmente es el único que se usa para misiones espaciales.

Captura de pantalla 2014-03-31 a la(s) 22.22.31
Centros de lanzamiento en China (Springer).

Las instalaciones del Área 4 están divididas en dos zonas: una dedicada a la integración de vehículos en la que destaca el Edificio de Ensamblaje Vertical o VPB (Vertical Processing Building), muy similar al VAB estadounidense, pero mucho más pequeño, y otra con dos rampas de lanzamiento. El edificio de integración vertical dispone de dos zonas de montaje independientes. El cohete es trasladado a una de las dos rampas mediante un transporte móvil, una técnica que China también emplea en el centro de Wenchang. Jiuquan es el único centro espacial chino desde donde se lanzan las misiones tripuladas de las naves Shenzhou. La primera misión espacial tripulada china, la Shenzhou 5, despegó desde Jiuquan en 2003. La rampa principal, SLS-1, se usa para lanzamientos tripulados del cohete CZ-2F. La rampa SLS-2 se emplea para misiones no tripuladas de cohetes CZ-2C, CZ-2D, CZ-4B y CZ-4C. Los lanzamientos militares están bajo la jurisdicción de la Base 20 del Ejército Popular de Liberación de China.

Mapa del centro espacial (CALT).
Mapa del centro espacial (CALT).

Zona de integración de Jiuquan (CALT).
Zona de integración de Jiuquan (CALT).

Interior del edificio de ensamblaje vertical (CALT).
Interior del edificio de ensamblaje vertical (CALT).

El centro espacial de Jiuquan en Google Earth. A la derecha se aprecian las dos rampas (Google).
El Área 4 del centro espacial de Jiuquan. A la derecha se aprecian las dos rampas (Google Earth).

El satélite y el cohete en la rampa:

22e150720349875908115075277702462301507527770935786

http://spaceweathergallery.com/indiv_upload.php?upload_id=139871

http ://danielmarin.naukas.com/2017/10/09/lanzado-el-satelite-venezolano-vrss-2-larga-marcha-cz-2d/

Rystad Energy: Las reservas petroleras de Venezuela son mucho menores de lo que se afirma


Rystad Energy: Las reservas petroleras de Venezuela son mucho menores de lo que se afirma

Jul 12, 2017 5:15 pm  DestacadosEconomía

La afirmación de Venezuela de poseer las mayores reservas de petróleo del mundo con base en su enorme cinturón de petróleo pesado en el Orinoco ha sido tema de escepticismo en la industria durante años.

Por Robert Perkins en The Barrel Blog de Platts / Traducción libre el inglés Por lapatilla.com

El productor petrolero suramericano afirma que tiene más de 300 mil millones de barriles de petróleo de reservas probadas, una cifra que los analistas creen que es exageradamente alta, ya que gran parte de sus enormes recursos bituminosos son difíciles y, por tanto, demasiado costosos de producir.

Ahora, dos años después de la mayor caída del precio del petróleo en una generación, las afirmaciones sobre el tamaño de la reserva petrolera venezolana no sólo parecen cada vez más inestables sino que el actual escollón económico y político del país, significa que sus reservas recuperables están ahora en caída.

La consultora noruega de petróleo Rystad Energyestimó la semana pasada que los recursos totales recuperables de petróleo de Venezuela se sitúan en 75.000 millones de barriles, un 24% por debajo de los niveles anteriores y menos de un cuarto de la cifra oficial de reservas probadas de 302.300 millones de barriles.

El déficit es aún más dramático dado el enfoque que utiliza Rystad para clasificar los recursos recuperables de petróleo.

A diferencia de la publicación estadística anual deBritish Petroleum (BP), que presenta una mezcla de categorías de recursos basadas en fuentes oficiales opacas como “probadas”, Rystad afirma que adopta un enfoque más riguroso aplicando los estándares de la Sociedad de Ingenieros de Petróleo (SPE).

Sobre esta base, las reservas probadas de Venezuela se sitúan en apenas 8 mil millones de barriles, una fracción del total que dicen tener y menos que su vecino Brasil. Incluso sobre una base de reservas probadas y probables más generosa -que equivale a las reservas 2P citadas por las compañías petroleras como la estimación más probable de su petróleo recuperable– Venezuela tiene 17 mil millones de barriles, según afirma Rystad.

El potencial de la Faja del Orinoco

Entonces, ¿por qué es tanta la discrepancia? Parte de la diferencia proviene de las diferentes estimaciones de la viabilidad comercial del petróleo extrapesado del Venezuela, un umbral clave para el estado de las reservas probadas.

Los aumentos de las reservas “probadas” de Venezuela se han basado en las mejoras de las tecnologías de producción de los yacimientos petroleros y el aumento de los precios del petróleo. Esas cifras comenzaron a crecer bajo el presidente socialista Hugo Chávez, quien declaró en 2011 que las reservas probadas de Venezuela habían eclipsado a Arabia Saudita como las más grande del mundo.

Una evaluación muy citada del Servicio Geológico de los Estados Unidos del 2009 otorgó credibilidad a la jactancia, calculando que la Faja del Orinoco podría albergar hasta 650.000 millones de barriles de petróleo producible. El cálculo, sin embargo, se basó en la estimación oficial de Venezuela del petróleo –in situ– en la Faja del Orinoco y evitó la cuestión de que si el crudo viscoso es rentable de producir.

Con el petróleo vendiéndose por más de USD 100 por barril en 2011, en ese momento la tarea de producir el crudo pesado venezolano -que necesita ser mezclado con diluyentes como la nafta o mejorado antes de que pueda refinarse- parecía menos oneroso.

Por el contrario, Rystad estimó en el año 2015 que más de la mitad del petróleo de Venezuela no era comercial rentable producirlo con el crudo Brent por debajo de USD 60 por barril, en comparación con alrededor de sólo el 10% para el petróleo de Arabia Saudita.

La caída de las reservas

Dado que los precios del petróleo hoy se sitúan cerca de los niveles del año pasado en USD 45 por barril, la recuperación económica del crudo en el subsuelo explica las recientes revisiones de las reservas que ha hecho Rystad.

De hecho, el grupo con sede en Oslo también analiza las actividades de producción, perforación y su rendimiento para estimar las reservas para campos individuales. Como resultado, la caída de los precios del petróleo desde 2014 y la consiguiente turbulencia económica en Venezuela han afectado gravemente sus estimaciones de reservas para el país.

El lento ritmo de las actividades de desarrollo en la Faja del Orinoco y la caída de la tendencia de la producción también está cobrando su precio.

Año tras año, los recursos recuperables de Venezuela en la medida más amplia han caído 23 mil millones de barriles, según Rystad, desde 95 mil millones de barriles a mediados de 2016. Las reservas 2P están ahora 5 mil millones de barriles más bajas que hace un año.

La razón principal por la cual las reservas petroleras en Venezuela han sido revisadas a la baja es debido a la baja de las perspectivas de precios del petróleo”, dijo Aditya Ravi, analista de Rystad. “La baja en el precio del petróleo ha afectado especialmente a Venezuela y la producción en ese país ha disminuido más rápido de lo que habíamos previamente estimado”.

De hecho, mientras que las reservas oficiales venezolanas han aumentado desde el año 2000, debido a que los mayores precios del petróleo impulsaron el optimismo, la producción petrolera del país se dirigió en sentido opuesto después de la llegada de Chávez al poder en 1998.

El país estaba bombeando 1,94 millones barriles diarios en mayo, según estimaciones de S & P Global Platts, por debajo de los 2,7 millones de barriles diarios a principios del año 2005.

Sin nuevos descubrimientos, la producción de crudos ligeros y medios (necesarios para diluir el petróleo extra pesado de la Faja del Orinoco) se ha desplomado, obligando a Caracas a comenzar a importar crudo ligero para su mezcla desde el año 2015. Las compañías petroleras extranjeras también se han negado a gastar miles de millones de dólares necesarios para producir mas crudo exportable desde esa región.

Muchos campos maduros también han sufrido tasas de declive mayores a las normales de año en año.

Ravi señala al envejecido campo Jobo de PDVSA en el extremo noreste de la Faja de crudo pesado que fue visto como el precursor de la actual ronda de proyectos de petróleo pesado de la Faja del Orinoco. El campo con producción con tecnología “steamflood” (recuperación mejorada por inyección de vapor), lanzado a finales de los años 70, está produciendo alrededor de 8.000 barriles diarios a pesar de que PDVSA reportó que sus reservas son de 1.300 millones de barriles, un nivel que “parece muy poco realista”.

Creíbles o no, las afirmaciones de Venezuela de poseer las mayores reservas del mundo pueden importar poco. Los apetitos de las compañías petroleras internacionales para explotar los costosos crudos pesados ya pueden estar en declive a medida que las iniciativas de cambio climático global reorientan la inversión hacia combustibles de bajo carbono como el gas. Y esto podría dejar gran parte del petróleo de Venezuela en el subsuelo.

https://www.lapatilla.com/site/2017/07/12/rystad-energy-las-reservas-petroleras-de-venezuela-son-mucho-menores-de-lo-que-se-afirma/

 

Por qué Nigeria no es Noruega.


Por qué Nigeria no es Noruega: cómo llevar a la ruina un país con valiosos recursos naturales.

FUENTE Infobae,

Ambas naciones cuentan con enormes reservas de petróleo. Pero mientras el europeo se encuentra entre los más desarrollados del planeta, el africano padece de pobreza y devastación ambiental. ¿Qué hizo mal Nigeria? Una investigación del programa “Ambiente y medio”

Seis de cada diez nigerianos viven con menos de un dólar al día, según la Oficina Nacional de Estadísticas

¿Por qué Nigeria no es Noruega? En la misma época, hace poco más de medio siglo, a tantos kilómetros de distancia hallaron en ambos países la misma cantidad de petróleo en su subsuelo. En la actualidad, Noruega es Noruega y Nigeria ostenta, además de una pobreza abyecta, la destrucción del delta del río Níger. Sus 70.000 kilómetros cuadrados de superficie cubren casi el ocho por ciento de la superficie de uno de los más grandes países del África central, una región con marcada tendencia a la contaminación: antes del petróleo, durante el protectorado británico, era un cúmulo de ríos de aceite. De aceite de palma, su principal producto de exportación.

Luego llegaron el petróleo y Shell. La empresa de origen holandés provocó en 2008 un derrame de 600.000 barriles de petróleo. Pero no fue accidente, sino costumbre. En los años anteriores, el desaprensivo manejo del crudo provocó tantos daños que, según Amnesty International, «destruyó la pesca y el ganado, subió hasta diez veces el precio del pescado y llegó a las reservas de agua potable, además de dañar la vista y producir dolores de cabeza a los lugareños». La empresa negó todo, contaminó los procesos judiciales y abonó una risible indemnización de 70 millones de euros que quedaron atrapados en la otra plaga de la nación africana, la corrupción.

El delta del Níger no se recuperó. Es más, el Instituto Blacksmith lo incluyó reiteradamente -y así sigue hasta el presente-  entre los diez sitios más contaminados del planeta. Es el resultado de esa costumbre llamada saqueo. Entre 1976 y 2001, ya se habían contabilizado siete mil incidentes de vuelco de crudo a las aguas, y prácticamente nada de todo eso ha sido remediado. El Nigerian Medical Journal estimó en 2013 que la contaminación extendida y constante condujo a una reducción del 60 por ciento de la seguridad alimentaria de los hogares nigerianos, sin contar que el contacto permanente con el petróleo y sus gases tóxicos propaga el cáncer y la infertilidad.

Un agricultor local muestra su mano llena de aceita cerca de Ogoni, Nigeria (EPA/MARTEN VAN DIJL)
Un agricultor local muestra su mano llena de aceite cerca de Ogoni, Nigeria (EPA/MARTEN VAN DIJL)

Trans-Niger es el nombre que recibe el oleoducto que Shell maneja desde 1953, tras reemplazar una colonización por otra. El caño, que transporta 180.000 barriles de crudo diarios y derrama otros tantos, atraviesa el mayor humedal de África, una de las mayores concentraciones de biodiversidad del planeta. El oleoducto, ruinoso, oxidado y sin mantenimiento alguno, es la fuente de aporte sistemático del petróleo que impregna el delta del Níger, pues casi un diez por ciento de lo que transporta, se pierde. Y aún así, está claro, es negocio: la remediación, el saneamiento y la protección ambiental no están entre sus costos.

Con una dosis de cinismo equivalente a los derrames, algunos hablan de la «maldición de los recursos naturales« para justificar la desidia de los países dotados de ecosistemas valiosos. Alcanza con llevar la vista a Noruega para desmentirlo.

Cicatrices es una sección del programa Ambiente y Medio que se emite todos los sábados a las 16 por la Televisión Pública Argentina

Ver en enlace original:

https://www.infobae.com/economia/rse/2017/05/03/por-que-nigeria-no-es-noruega-como-llevar-a-la-ruina-un-pais-con-valiosos-recursos-naturales/

Gas natural y cultura petrolera en Venezuela 


Gas natural y cultura petrolera en Venezuela  Rubén Pérez* / Soberania.org – 31/05/12  Segui @Soberania   El próximo 31 de Julio de 2014 se cumplirán 100 años del reventón del pozo Zumaque 1 (en la foto). El pozo que da inicio a la era de la explotación comercial de la industria petrolera Venezolana.ssssssss    El primer registro de producción de gas natural por un ente oficial data de 1938, 14 años después del reventón del Zumaque 1  Tweet

El próximo 31 de Julio de 2014 se cumplirán 100 años del reventón del pozo Zumaque 1. El pozo que da inicio a la era de la explotación comercial de la industria petrolera Venezolana. Desde ese momento la vida del venezolano comenzó a cambiar, para bien o para mal, en muchos aspectos de la vida cotidiana. 

El inicio de la era comercial petrolera no solo movilizó a campesinos y pescadores venezolanos a trabajar en la naciente industria del oro negro, junto a ellos llegaron varios miles de extranjeros empleados de las empresas transnacionales a trabajar en la nueva Arabia Saudita de América. Estos extranjeros conocían y manejaban la tecnología, lideraban las operaciones de las transnacionales petroleras que se instalaron en el país e implantaron la cultura de industria y país petrolero que prevalece hoy en día en Venezuela. 

Están muy bien registrados los datos de producción de petróleo de esos primeros pozos de nuestra historia, son datos públicos a los que cualquier usuario puede acceder con una simple búsqueda en Internet o en una biblioteca pública nacional. No sucede así cuando se trata del gas natural, El libro “La Industria del Gas Natural en Venezuela” publicado por la Academia Nacional de Ingeniería y Hábitat indica que el primer registro de producción de gas natural por un ente oficial data de 1938, 14 años después del reventón del Zumaque 1. 

En el reglamento de la ley de hidrocarburos de 1930 se prohíbe el venteo del gas natural a la atmósfera y se exige su aprovechamiento o retorno al yacimiento. Ante esta exigencia las empresas transnacionales argumentaron la imposibilidad de producir petróleo sin desperdiciar un producto sin valor comercial para ellos: El Gas Natural. 

Aunque desde el punto de vista legal Venezuela ha avanzado en materia de gas natural, desde el punto de vista organizacional y de cultura operacional son  pocos los elementos que muestran un cambio de visión con respecto al gas natural dentro de la estatal petrolera, los campos productores de hidrocarburos e inclusive en las escuelas de Ingeniería de Petróleo de las Universidades Nacionales. Solo hay que partir del hecho simple de que la mayoría de nuestra infraestructura se diseñó para el manejo de petróleo, y no para darle un uso diferente al gas natural, que no sea su re inyección al yacimiento para extraer más petróleo. Si existiesen  excedentes estos se entregan al consumo de terceros como es el caso de la producción en el Lago de Maracaibo. 

No queda duda que el petróleo es dinero inmediato, constante y sonante para un país petrolero que afronta un gran número de crisis internas; su producción, procesamiento y comercialización es casi automática y requiere bajas inversiones comparadas con la industrialización que plantean los negocios relacionados con la monetización del gas natural: Petroquímica, Gas Natural Licuado, Generación Eléctrica, Gas To Liquids, entre otros; negocios que promueven el desarrollo endógeno, la creación de PYMES, la reactivación de sectores deprimidos como el del plástico, en general se disminuye el desempleo y se motoriza la economía regional y nacional.

Sin embargo, la industria del gas natural en Venezuela y su industrialización igualmente ha tenido quienes la han apoyado, difundido sus beneficios y promovido políticas tendientes a su crecimiento; un ejemplo de ello es la Asociación Venezolana de Procesadores de Gas (AVPG) quienes por casi 30 años han realizado esta tarea; Diversas universidades del país han promovido postgrados en el área, y en los últimos diez años se ha sumado a la oferta en pregrado la carrera de Ingeniería de Gas. De la misma forma, asociaciones de estudiantes en distintas universidades del país han promovido Congresos y foros relacionados al tema del gas natural.

No obstante, debido a que la cultura petrolera nacional se encuentra profundamente enquistada en el país, el desarrollo acelerado de la Industria Gasifera Nacional y la de sus derivados pasa por la toma de conciencia del uso y la importancia del gas natural como fuente de energía, materia prima para su transformación nacional y fuente de ingresos al país por su venta al extranjero; La asimilación de que son negocios globales con un dinamismo y funcionamiento completamente diferente al de la industria petrolera a la cual estamos acostumbrados en el país, la sustitución de gerentes y directores de mentalidad petrolera que hagan vida en la industria gasífera nacional que no se adapten a los cambios que se ameritan para dar un impulso a esta industria, entre otros. 

Si no se toman las medidas adecuadas, y se le da el impulso que amerita la industria gasifera en pro del desarrollo de la nación, estaremos destinados a continuar siendo un país que vive de la renta petrolera,importador de gran cantidad de productos manufacturados y con un gran grupo de profesionales formados en materia de gas natural, trabajando para extraer más y más petróleo.

Share|

 [*] Rubén Pérez / E-mail: rubenpe@gmail.com / Twitter: @natgas_proeng / Ingeniero Químico (Univ. Rafael Urdaneta, Maracaibo), Msc en Ingeniería de Gas Natural (La Universidad del Zulia, Maracaibo), Especialista en Gerencia del Negocio del Gas Natural (Universidad Simón Bolívar, Caracas). 15 años de experiencia en la industria Petroquímica y de los Hidrocarburos.

http://soberania.org/Articulos/articulo_7328.htm

«SECRET COMMUNICATION SYSTEM»: FREQUENCY HOPPING; THE SOLUTION FOR THE JAMMING PROBLEM


HEDY LAMARR

Hedy Lamarr. She Born Hedwig Eva Maria Kiesler(1914-2000)  in Vienna, Austria-Hungary  the november 9, 1914, (this day, Austria celebrate now the inventer day) Lamarr was first known for her risqué role in the 1933 Czech film Ecstasy. At 19 she married Friedrich Mandl, a men 30 years oldest than her, he was a munitions manufacturer with ties to Mussolini and Hitler. Mandl insisted she accompany him to meetings, often with scientists and others with military knowledge. Here she was exposed to applied science, a subject that interested her for many years. Lamarr developed a passion for helping the U.S. military after walking away from the unhappy marriage to the Austrian Fascist weapons manufacturer in 1937. [03] She made plans to leave both her husband and Europe and booked passage on a boat to the United States. Making the acquaintance of Louis B. Mayer along the way, she had an MGM contract before hitting land. Often cast as the exotic seductress, she starred opposite other greats including Spencer Tracy, Clark Gable, James Stewart, Lana Turner and Judy Garland. [01] Hedy Lamarr was a movie star in the golden age of Hollywood of the 1930s and 40s. George Antheil was a Dadaist avant garde composer. The two became friends, and during World War II, they became inventors. [02]Called the most beautiful woman in the world, her face become as inspiration for the famous characters as Snowwhite and catwoman. Hedy Lamarr was a MGM actress in the golden era of Hollywood, but her real life story is better than any of her films. She may have also been a kleptomaniac, but she was anti-Nazi and concerned about the Allied forces in World War II. Hedy Lamarr wasn’t just a beautiful movie star. According to a new play, Frequency Hopping, she was also a shrewd inventor who devised a signal technology that millions of people use every day. [03]

THE IDEA FOR A NEW PATENT

It is the explain how one of the best known actresses of mid-20th century revolutionized weapons systems and helped create cell phones [03] Lamarr developed the idea of frequency hopping, a system of randomly creating a sequence of frequency changes understood by the controller and the torpedo to mask the signal. With Antheil’s help, they used a piano roll to randomly change between 88 frequencies (the number of keys on a keyboard) to encrypt the signal. A patent was granted to Lamarr (under her married name Markey) and Antheil for a «Secret Communication System» but the thought of controlling torpedoes with an electro-magnetic piano roll didn’t immediately appeal to the US Navy. Despite having a patent for Frequency Hopping technology, Charles Kettering suggested she would be more help to the war effort by using her celebrity to sell bonds, which she did. Still her invention is sited in later patents for spread-spectrum communication technology which is used for GPS, Bluetooth, Wi-Fi and cell phones today. [01] In an attempt to stall her acting career, he had brought her to his business meetings, where she found herself continuously listening to «fat bastards argue antiaircraft this, vacuum tube that,» explains Lamarr’s character—played by Erica Newhouse—in the play, Frequency Hopping. In the meetings, they had talked about developing detection devices to listen to, and jam, the radio signals that American aircraft and weapons used to communicate with one another; and Lamarr wanted to foil their plans. «Can you guide your torpedo towards an enemy target—or just use radio control period—without being detected? Or jammed?» Lamarr’s character asks. [03] Spread spectrum technologies are useful in situations where a large number of radio communications are taking place near each other, such as in a cellphone system or a WiFi network. Techniques similar to Lamarr and Antheil’s system make it possible for many phone users or computers to use the same cell tower or wireless router at the same time without too much interference or loss of signal. [02]

«SECRET COMMUNICATION SYSTEM» FREQUENCY HOPPING; THE SOLUTION FOR THE JAMMING PROBLEM

In 1941 Lamarr met avant-guard composer George Antheil who experimented with player pianos and the automated control of musical instruments. Drawing on her previous military exposure, Lamarr realized torpedoes could be controlled by radio frequency to more accurately strike enemy ships, but the signal would be easily detected and jammed, rendering the torpedo useless. The actress and the composer wanted to find a way to securely guide torpedoes. While radio remote controls for torpedoes already existed, they had a major weakness: once the targeted ship figured out what frequency was being used by the attacking ship to guide the torpedo, they could jam the control signal by broadcasting noise on that frequency and overpowering the commands from the attacking ship. [02] In addition to being harder to block, messages broadcast on a frequency hopping system are also harder to intercept: if a would be eavesdropper is listening to one particular frequency, they will hear at most a short part of a message before the radios jump to a different frequency. [02] A key part of making this «Secret Communication System» work was coordinating the frequency shifts between the ship and the torpedo. The torpedo’s receiving antenna needs to be tuned to the same frequency as the ship’s broadcasting antenna in order to receive the guidance signal. [02] Lamarr’s solution to the jamming problem was to spread the control signal over a variety of frequencies. The control signal from the attacking ship would start out on one frequency, and then jump to another frequency, and then yet another. By changing frequencies at regular intervals, it would be much harder for the enemy to jam the control signal, since it would take a huge amount of power to block all the possible frequencies that the attacking ship was using. [02] Here, Antheil’s experience as an avant garde composer came in handy. He was obsessed with machinery, and in particular, once wrote a piece that was intended to feature sixteen player pianos. This provided a way to keep the two antennas in sync: the ship and the torpedo would each have an identical player piano roll. Rather than controlling a musical instrument, the marks on the rolls would set each antenna to a particular frequency. So, by reading the player piano rolls at the same speed, the ship and torpedo could keep jumping frequencies, and still have their antennas tuned together. [02] Lamarr and Antheil’s frequency hopping system was one of the first designs in a broader class of communications technologies called spread spectrum techniques. These technologies use a larger range of frequency bandwidth than is strictly necessary just to convey a message alone, like the Secret Communication System’s jumping around using a variety of frequencies. [02] Lamarr realized that by transmitting radio signals along rapidly changing, or «hopping,» frequencies, American radio-guided weapons would be far more resilient to detection and jamming. The sequence of frequencies would be known by both the transmitter and receiver ahead of time, but to the German detectors their message would seem like gibberish. «No jammer could detect it, no German code-breaker could decipher a completely random code,» she says in the play. [03]

DELAY IN USE THE NEW TECHNOLOGY

In 1940 after working on the project for several years, Lamarr called on an unlikely invention partner: avant-garde composer George Antheil, 13 years her senior. As the play—which includes a 25-piece robotic orchestra performing one of Antheil’s most renowned pieces—makes clear, frequency hopping spread spectrum is based on a musical concept. The frequencies are «carried in waves through space like melodies,» Lamarr’s character explains. [03] More broadly, frequency hopping can be compared with aspects of human communication, argues the production’s Brooklyn-based playwright and director Elyse Singer, whose other works include Love In The Void (alt.fan.c-love), a play about Courtney Love’s Internet postings. Just as the frequencies «hop» to avoid detection, «we send secret codes to each other, shift and hop and avoid, especially in romantic relationships,» Singer says. The play explores this theme in the tumultuous relationship that develops between Lamarr and Antheil. [03] The pair succeeded in patenting their technology, and presented the concept to the National Inventors Council in 1940, but their invention—which used a piano roll to change between 88 frequencies—was not well received. «The U.S. Navy said, ‘Thank you very much for the patent, Miss Lamarr—we won’t be needing your services here in Washington,'» Lamarr’s character laments onstage. [03] Unfortunately, the navy didn’t immediately use Lamarr and Antheil’s system. The basic idea was not used until 1962 during the Cuban Missle Crisis, and by then the patent had expired. , by this time of the Cuban Missile Crisis, frequency hopping radios were in common use on Navy ships, using electronic devices to keep frequencies synchronized rather than player piano rolls. [02]. The technology was little noticed until ITT (International Telephone and Telegraph) found it while doing patent research for the civilian coding system CDMA, and duly noted the expired work. This according to Lamarr supporters validates the claim that Frequency Hopping is the basis for spread-spectrum communication technology, used in Bluetooth, Wi-Fi network connections and CDMA (Code Division Multiple Access), a channel access method used in wireless phones. [01] The delay in use of a now common technology begs the question, are people with good ideas but lack the usual education and experience taken seriously? There are practical reasons why Lamarr’s idea was not immediately used. The military already had a lot on it’s plate, radar, sonar, the atomic bomb, and the components needed may have been too crude or not available at all in 1942. There are skeptics that feel Lamarr has received too much credit, or because of lax patenting practices may not have had a new or worthy idea at all. (See patent US 723188 A, N. Tesla, 1903) When you dig deeper and find stories of Lamarr and Antheil meeting over a breast augmentation discussion (Antheil being a self proclaimed expert in Glandular Criminology) or Lamarr’s simplistic responses when questioned about the invention it’s hard not to have doubts. While ITT sited the patent, it had no bearing on ITT’s development of CDMA and was more of a novel antidote to an otherwise dull document. She and Antheil were recognized with the 1997 Electronic Frontier Foundation Pioneer Award, but received little or no compensation in their lifetimes. Maybe Hedy Lamarr was ahead of her time. Maybe she was just passing on something she overheard in her Nazi-sympathizer ex-husband’s business meetings. Does she belong in a list of great inventors? I tend to think not and that her story is overly romanticized, but I do respect her as an intelligent person looking to solve a complex problem. Whatever you believe it makes a great Hollywood script. Hedy Lamarr died in Florida in 2000[01] The technology, says Singer, was far ahead of its time. Although her ideas were at first ignored, the technology (which she and Antheil patented in 1942) was later used by the military—during the Cuban missile crisis in October 1962, for example—and more recently, it has been employed in wireless technologies like cell phones. It was eventually recognized in 1997, when the Electronic Frontier Foundation honored Lamarr with a special Pioneer Award and she became the first woman to receive the Invention Convention‘s BULBIE Gnass Spirit of Achievement Award. [03] A performace fittingly, Frequency Hopping is itself a highly technological production Being able to project images on two planes helps us to get into Lamarr and Antheil’s mindscape, which is really where artists and scientists develop new ideas,». Frequency Hopping was runs in 2008 at New York City’s 3LD Art & Technology Center.[03]

[01] Hedy Lamarr and Frequency Hopping From : http://www.deadinventors.com/2013/10/hedy-lamarr-and-frequency-hopping.html

[02] http://www.businessinsider.com/hedy-lamarr-george-antheil-frequency-hopping-2014-7

[03] Hedy Lamarr: Not just a pretty face by By Melinda Wenner on June 3, 2008. http://www.scientificamerican.com/article/hedy-lamarr-not-just-a-pr/ Rights & Permissions

[04] performances through June 29  2008 at 3LD Art & Technology Center http://www.hourglassgroup.org/frequency.html

[05] PDF: https://patentimages.storage.googleapis.com/pdfs/US2292387.pdf

WEB: https://www.google.com/patents/US2292387?dq=hedy+lamarr+patent&hl=en&sa=X&ei=6OBUUqGrJrHwiQLJ4YDICA&ved=0CDcQ6AEwAA

See also: https://en.wikipedia.org/wiki/Hedy_Lamarr It was lots more fun being scientific than going to the movies. – Hedy Lamarr quote from The Stars and Stripes [01] Source [01] Credit: Courtesy of Dixie Sheridan Written & Directed by Elyse Singer Original Score by Joshua Fried performed by the 25-piece automated Ballet Mécanique Orchestra Production and Multimedia Design by Elaine J. McCarthy Starring Erica Newhouse and Joseph Urla Costume Design by Angela M. Kahler Lighting Design by Tyler Micoleau Sound Design by Marcelo Anez Wigs and Make-up Design by J. Janas and R. Greene Robotics by Eric Singer’s LEMUR: League of Electronic Musical Urban Robots Programmed by Paul Lehrman/Ballet Mécanique Project Dramaturg: Erika Rundle [04] PATENT [05] Secret communication system US 2292387 A Source : Google H. K. MARKEY ETAL, SECRET COMMUNICATION SYSTEM Filed June 10, 1941 2,292,387 2 Sheets-Sheet 1 Patented Aug. 11, 1942 H. K. MARKEY ETAL, SECRET COMMUNICATION SYSTEM Filed June 10, 1941 2,292,387 2 Sheets-Sheet 2 Patented Aug. 11, 1942

Publication number US2292387 A
Publication type Grant
Publication date Aug 11, 1942
Filing date Jun 10, 1941
Priority date Jun 10, 1941
Inventors Antheil George, Markey Hedy Kiesler
Original Assignee Antheil George, Markey Hedy Kiesler
Export Citation BiBTeX, EndNote, RefMan

UNITED STATES PATENT OFFICE 2,292,387 SECRET COMMUNICATION SYSTEM Hedy Kiesler Markey, Los Angeles, and George Anthcil, Manhattan Beach, Calif. Application June 10, 1941, Serial No. 397,412 6 Claims. (CI. 250-2) This invention relates broadly to secret communication systems involving the use of carrier waves of different frequencies, and is especially useful in the remote control of dirigible craft, such as torpedoes. An object of the invention is to provide a method of secret communication which is relatively simple and reliable in operation, but at the same time is difficult to discover or decipher. Briefly, our system as adapted for radio control of a. remote craft, employs a pair of synchronous records, one at the transmitting station and one at the receiving station, which change the tuning of the transmitting and receiving apparatus from time to time, so that without knowledge of the records an enemy would be unable to determine at what frequency a controlling impulse would be sent. Furthermore, we contemplate employing records of the type used for many years in player pianos, and which consist, of long rolls of paper having perforations variously positioned in a. plurality of longitudinal rows along the records. In a conventional player piano record there may be 88 rows of perforations, and in our system such a record would permit the use of 88 different carrier frequencies, from one to another of which both the transmitting and receiving station would be changed at intervals. Furthermore, records of the type described can be made of substantial length and may be driven slow or fast. This makes it possible for a. pair of records, one at the transmitting station and one at the receiving station, to run for a length of time ample for the remote control of a device such as a torpedo. The two records may be synchronized by driving them with accurately calibrated constant speed spring motors, such as are employed for driving clocks and chronometers. However, it is also within the scope of our invention to periodically correct the position of the record at the receiving station by transmitting synchronous impulses from the transmitting station. The use of synchronizing impulses for correcting the phase relation of rotary apparatus at a receiving station is Well-known and highly developed in the fields of automatic telegraphy and television. Other more specific objects and features of our invention will appear from the following detailed description of a particular embodiment thereof, as illustrated in the drawings, in which Fig. 1 is a schematic diagram of the apparatus at a transmitting station; Fig. 2 is a schematic diagram of the apparatus at a receiving station; Fig. 3 is a schematic diagram illustrating a starting circuit for starting the ,motors at the transmitting and receiving stations simultaneously; Fig. 4 is a plan view of a section of a record strip that may be employed; Fig. 5 is a detail cross section through a record-responsive switching mechanism employed in the invention; Fig. 6 is a sectional view at right angles to the view of Fig. 5 and taken substantially in the plane VI-VI of Fig. 5, but showing the record strip in a different longitudinal position; and Fig. 7 is a diagram in plan illustrating how the course of a torpedo may be changed in accordance with the invention. Referring first to Fig. 7, there is disclosed a mother ship 10 which at the beginning of operations occupies the position la and at the end of the operations occupies the position l0b. This mother ship discharges a. torpedo II that travels successively along different paths l2, l3, I4, l5 and IE to strike an enemy ship 17, which initially’ occupies the position 17c but which has moved into the position llb at the time it is struck by the torpedo H. According to its original course, the enemy ship I! would have reached the position I10, but it changed its course following the firing of the torpedo, in an attempt to evade the torpedo. In accordance with the present invention, the torpedo II can be steered from the mother ship Illa and its course changed from time to time as necessary to cause it to strike its target. In directing the torpedo it may, under some circumstances, be observed directly from the mother ship 10a, or its course may be followed by an observer in an airplane l8 who communicates his findings to the mother ship Illa. It is also possible to control the torpedo directly from the airplane IB if the latter is equipped with the necessary synchronous transmitting equipment in accordance with the invention. Under the particular circumstances of Fig. 7, the enemy ship 17 was traveling in a straight line substantially parallel to the mother ship 17 at the time the torpedo was discharged, and the latter was directed forwardly at a substantial angle to compensate for the speed of the ship 17 and for water currents represented by the small arrows 19. However, as a result of the change in course of the enemy ship 17 and the effect of the water currents, it is observed that the torpedo, if it continues on its original course, will miss the enemy ship. Hence it is steered by remote control to depart from the path 12 and follow the path B. At later times it is noted that further changes are necessary, and its course is successively changed from the path l3 to the path l4, to the path i5, and to the path ii, in order to strike the enemy ship l7b. The remote control of the torpedo as described is old and broadly does not constitute a part of our invention. However, it has been very difficult in the past to employ radio control of a torpedo, for the reason that the enemy could quickly discover the frequency of the control signals and block control of the torpedo by sending false signals of the same frequency. In accordance with our invention, we employ variable frequency radio transmitters and receivers for the remote control, and change the frequency at intervals by synchronous records at the two stations. Referring to Fig. 1, the apparatus at the transmitting station includes as its main elements a variable-frequency carrier oscillator 20, a modulator 2|, an amplifier 22, and an antenna 23. These elements are represented schematically since their exact construction does not constitute a part of the present invention. Suffice it to say that the variable-frequency. carrier oscillator 2|! is controlled to oscillate at different frequencies by a plurality of tuning condensers 24a, 24b, 24c, 24d, 24c, 24!, and 24a, adapted to be independently connected to the oscillator by automatically controlled switches 3|, one for each condenser. The different condensers 24a to 2417, inclusive, are of different capacities, and these differences are indicated in the drawings by different spacing’s between the plates. Two controls are provided in the system of Fig. 1, in the form of two keys L and R, respectively. Key L is employed to transmit a signal for applying left rudder to the distant torpedo, and the key R is employed to apply right rudder to the torpedo. Actuation of the key L closes main contacts 32, which connect the output of the oscillator 20 to the modulator 21, and at the same time closes contacts 33, which connect a 100-cycle oscillator 34 to the modulator 21, which there upon modulates the particular carrier wave being generated at that time by the oscillator 20. The modulated carrier wave is then amplified in the amplifier 22 and transmitted from the antenna 23. If the operator desires to app y right rudder to the distant torpedo, he actuates the key R, which closes the main contacts 32 and also closes contacts 35, which connect a 500-cycle oscillator 36 to the modulator 21. The switches 31 are selectively closed by a record-controlled mechanism actuated by a record strip 31, which is drawn off a supply roll 36 over a control head 39 and wound up on a take up spool 40 driven by a constant-speed clock motor 41. Referring now to Fig. 4, the record strip 27 has perforations arranged in eight different longitudinally extending rows A, B, C, D, E, F, G, and H, respectively. Perforations in the rows A, B, C, D, E, F, and G control the seven switches 3| associated with the different tuning condensers 24a to 24g, inclusive. The perforations in row H control an auxiliary switch 42 (Fig. 1), which lights a signal lamp 43 from a battery 44. The strip 37 is drawn over the control head 39, as a previously mentioned and the control head responds to perforations in the different rows A to H, inclusive, on the strip, to close the various switches 31 and the switch 42. A typical construction that may be used in the control head 39 is shown in Figs. 5 and 6. Thus it may comprise a block or shoe 45 over which the record strip is drawn and which has a plurality of vertical passages 46, the orifices of which are juxtaposed to the different rows A to H, inclusive, of the strip. In Fig. 5 two of the passages 46 are shown juxtaposed to and in communication with apertures in the two rows C and G of the strip 31. Each of the passages 46 is communicated by a restricted passage 41 with a suction manifold 48, which is connected by a tube 49 to a suction pump 56. Each of the passages 46 is also connected by a tube 61 to the upper end of an associated-cylinder 52 containing a piston 53. Each piston 53 projects from the lower end of its associated cylinder 52 and overlies a movable spring 54 of one of the tuning switches 3|. The movable spring 54 is separated by a block of insulation 55 from the lower end of its associated piston 63. The pistons are normally maintained in upper position in which shoulders 66 thereon lie against the lower face of the cylinder block 51 containing the cylinders 62, under which conditions the contacts 31 are open. However, under certain conditions to be described, the pistons 53 are urged downwardly, by compression springs 53a positioned there above, to carry the movable springs 64 against the cooperating contact springs 58 to close the switches 37. The pistons 53 are maintained in uppermost position, in which the switches 37 are open, when a solid portion of the record strip 31 overlies the passages 46, but are depressed by the springs 53:: when apertures in the record strip move into registration with the passages 6. Thus so long as the upper end of a passage 46 is closed by the record strip 31, suction is up plied from the manifold 48 through the restrict ed passage 41 to the cylinder 62, and lifts the piston 53 against the force of the spring 63a. However, when a perforation in the record strip is in registration with a passage 46, air flows freely info the upper end of the passage and into the restricted passage 41, thereby breaking the suction applied to the upper end of the piston 53 and permitting the spring 63a to move the piston downwardly and close the associated switch 31. It will be obvious that by so positioning the perforations in the different rows A, B, C, D, E, F, and G, that perforations in different rows are successively brought into registration with their associated passages 46 (Fig. 5), different ones of the switches 3| will be successively closed, to -connect different ones of the tuning condensers 24a to 24g (Fig. 1) inclusive, to the oscillator 26 and thereby change the frequency of the carrier wave. Furthermore the frequency changes can be purely arbitrary, without any periodic recurrence that would render it easy for an enemy to anticipate the frequency at any particular instant. Referring now to Fig. 2, the apparatus at the receiving station, (which may be on the torpedo 11 of Fig. 1), comprises a receiving antenna 60 and a signal selector 61 that may be tuned to any one of four different frequencies by connecting thereto different condensers 24’d, 24’e, 24’f, and 24’g. When the condenser 24’d is connected to the selector 61 and the condenser 24d is connected to the oscillatr 20, the transmitter and receiver are both tuned to the same frequency, and so on. When a signal received on the antenna 60 is of the same frequency to which the selector 61 is tuned, the signal is amplified in an amplifier 64 and delivered to a detector 65. There will then appear in the output of the detector the modulation wave that was impressed upon the carrier at the transmitting station, and this modulation wave is applied to the input of a pair of filters I66 and 566, the first of which is tuned to l00-cycles and the second to 500-cycles. The output of the filter I66 is delivered through a rectifier I68 to a magnet I69, and the output of the filter 566 is delivered through a rectifier 568 to a magnet 569. The magnets I69 and 569 act on a common armature 12, which is normally positioned in a neutral position but moves in response to energization of magnet I69 to close on a contact I and moves in response to energizaticn of magnet 569 to close on a contact 510. If a received signal was produced by actuation of the key L (Fig. 1) at the transmitting station, then it is modulated with a wave of 100- cycles, and the modulation wave will be passed by the filter 166 to energize the magnet I69 and close the armature 72 on the contact 170, thereby completing a circuit from a battery 14 through a solenoid I15. The solenoid thereupon attracts its plunger 176, causing a pawl 177 , connected to the plunger, to be pulled into engagement with ratchet tecth 178 on a ruder whell 79 and advance the wheel clockwise by the length of one of the ratchet teeth. A spring 180 normally maintains the pawl 177 clear of the teeth 178, and a stationary cam face 181 guides the pawl into engagement with the ratchet teeth as it is moved by the plunger 176. The rudder wheel 79 is secured to a rudder post 82 carrying a rudder 83, so that the rudder is moved a predetermined distance toward the left in response to a single actuation of the key L. at .the transmitting station. The key need be closed only momentarily, and as soon as it is released the magnet I69 and the solenoid I are released, whereupon the pawl 177 and plunger 176 are retracted into neutral position by the spring 180. If the key R at the transmitting station is actuated, then the carrier wave is modulated with the 500-cycle modulating wave, which is passed by the filter 566 at the receiving station, to energize the magnet 569. This closes the armature 72 on the contact 570, to energize a solenoid 575, identical with the solenoid I15, and actuate a pawl 577 which engages with ratchet teeth 578. The latter are oppositely directed with respect to the ratchet teeth 178, so that the pawl 577 and the teeth 578 function to shift the rudder 83 to the right, instead of to the left. Some means must be provided to retain the rudder 83 in whatever position it has been moved by the pawl 177 or 511, and we have shown a brakedrum 84 frictionally engaged by a brakeband 85 and connected by a pinion 86 and a gear segment 81 to the rudder wheel 79. The brake band 85 offers sufficient frictional resistance to movement of the rudder to retain it in the position to which it has been moved, but insufficient to prevent movement of the rudder by the pawls 177 and 577. The tuning condensers 24’d to 24’g, inclusive, at the receiving station are adapted to be connected one at a time to the selector 6|, to tune it to different frequencies, by contacts 3I’ similar to the contacts 3I at the transmitting station, and actuated in the same way under the control of a record strip 31′, which may be identical with the record strip 31 at the transmitting station, and is pulled over a control head 39 by a clock motor M which runs at the same speed as the motor M at the transmitting station. The details of the control head 39′ and the switches 31, whereby the latter are closed in response to differently positioned perforations in the record strip 31′, are the same as those at the transmitting station, which were described with reference to Figs. 5 and 6. It is of course necessary that the record strips 31 and 31′ at the transmitting and receiving stations, respectively, be started at the same time and in proper phase relation with each other, so that corresponding perforations in the two record strips will move over their associated control heads at the same time. We therefore provide an apparatus for holding both record strips in a starting position until the torpedo is fired, and for then simultaneously releasing both strips so that they can be moved at the same speed by their associated motors M and M The holding mechanism at each station includes a pin 100 (Fig. 6) slidably mounted for vertical movement in the head 45 and adapted to engage a special starting hole 101 (Fig. 4) in its associated record strip. The pin 100 is normally urged into a lower position by a compression spring 102, as shown in Fig. 5, so that it is clear of the record strip and does not impede its movement. However, the pin is adapted to be held in upper position in engagement with the hole IOI in the record strip, by a solenoid 103 having a plunger 104 which is connected to the pin 100. The solenoid is shown energized in Fig. 6. Referring now to Fig. 3, when a torpedo equipped with the apparatus disclosed in Fig. 2 is prepared for firing from the mother ship, on which the transmitting apparatus of Fig. 1 is mounted, both the solenoid 103 on the torpedo and the solenoid 103 in the transmitting’ equipment, are connected in series with a battery 105 by a circuit including conductors 106 which extend between the torpedo and the transmitting station on the mother ship, thereby holding both the record strips in starting position. When the torpedo is fired, the conductors 106 are broken, thereby interrupting the series energizing circuit of the solenoids 103 and releasing both solenoids simultaneously to permit the strips at both stations to start in phase with each other. It will be noted that whereas there are seven tuning condensers 24 at the transmitting station, there are only four tuning condensers 24′ at the receiving station. The extra three tuning condensers at the transmitting station provide three additional channels for the transmitter for which there are no corresponding channels at the receiver, to thereby permit the sending of false impulses to confuse the enemy. In the particular system shown, the receiving apparatus is effective to receive on the channels D, E, F, and G, but is ineffective to receive on the channels A, B, and C. If the operator at the transmitting station sent a signal while the oscillator was operating on one of the channels A, B, or C, the signal would not be received on the torpedo. It its therefore desirable to provide an indicator to advice the operator at the transmitting station when the transmitting and receiving stations are both tuned to the same frequency. The lamp 43, actuated by the auxiliary switch 42 (Fig. 1) constitutes such an indicator. The switch 42 is closed to light’ the lamp 43 whenever an aperture in row H (Fig. 4) ,of’ the, record strip moves over its associated passage 4 row of the record strip are so arranged as to light’ the lam’p43 whenever the operator should not send a control, signal- To this end, the perforations in the row Hon the record strip occur at the beginning and: end of: each perforation in I the rows D, Eli, and G, and extend between successive, spaced, perforations in these rows (at which times perforations occur in one or more of the rows, A, B, and C, which transmit false signals). The, mechanism arranged as described, functions to light the lamp 43 for a short time during each transition from one to another of the useful channels D,E, F, and C. The operator will, of course, occasionally transmit impulses while the transmitter is tuned to one of the channels A,B, or C to mislead the enemy but he will know, by the fact the lamp 43 is lighted, that these impulses will not affect the torpedo. It will be understood that many variations, from the construction shown can be made without departing from the invention- Thus in order to simplify the drawings a record strip having only eight :rows of perforations has been illustrated. However, as previously mentioned, similar record strips employed in player pianos now have a many has as :88 rows of perforations, and a similar number could be employed in the present system to provide a large number of useable channels, to which both the transmitting and receiving stations can be tuned, and also a large number of auxiliary channels at the transmitter for sending false signals. If desired, the perforations corresponding to the false signals, may be omitted from the record strip at the receiver. However this is not necessary. The record strip at the transmitting and the receiving stations can be identical in all respects, and any number of rows of perforations in the record strip at the receiving station can be rendered ineffective by blocking the passages 46 in the receiving head that correspond to the false channels. It will also beobvious that the control heads 39 and 39′ at the transmitting and receiving stations, respectively, can be identical but the contact springs 54 and 5! (Fig. 6) at the receiver can be left disconnected in those channels in which false signals are transmitted. A very important feature of our system is that only relatively few and relatively short signals need be transmitted. Thus it is necessary only to close one of the keys L or R momentarily to deflect the rudder 83 by one increment in either direction. The transmission of a very short impulse may not be discovered by the enemy at all. Even if the enemy should pick up one of the impulses transmitted, he would not know whether it was an effective signal or a false signal. Furthermore, it is quite possible to so arrange the records that the receiver is never twice tuned to the same frequency. Although the invention has been explained by describing in detail its application to the control of a torpedo or other craft where it is necessary to steer in only one dimension, it will be I obvious to those skilled in the art that by using I a large number of modulation frequencies, additional functions can be performed. Thus by 1 using four modulation waves having frequencies «of say 100-cycles, 500-cycles, 1000-cycles and 2,000-cycles, respectively, and using appropriate filters at the receiving station, it is obvious that I two rudders can be controlled. This would be I recordings thereon, desirable when controlling aerial torpedoes or other types of craft in which control in, a vertical’ direction, as well as in a horizontal direction, is desirable. There is no particular limit to the number of control channels that can be used with our invention. It is also to be understood that other methods of modulation than the conventional one shown, including frequency modulation or phase modulation, can be employed in our system. The expression «carrier wave,» as used in the claims, is intended; to define the unmodulated wave when phase or frequency modulation is including frequency; modulation or phase modulation is employed. Various others departures from the exact system described will be apparent to those skilled’ in the art, and the invention’ is, therefore, to: be limited only a set forth in the appended claims. We claim: 1. In a secret communication system, a’transmittingstationincluding means for generating, and transmitting carrier waves of a’plura’lity of i I I frequencies, a first elongated record strip having I 1 differently characterized, longitudinally disposed record-actuatedmeans selec 1 tively responsive to different ones of said record’- I 1 ings for determining the frequency of said carrier Although the invention has been explained by I vl’raves, mean for ord-actuated means whereby the carrier wave frequency is changed from time to time in ac cordance with the recordings on said strip, a receiving station including carrier wave-receiving means having tuning means tunable to said carner wave frequencies, a second record strip, record-actuated means selectively responsive to different recordings on’said second record strip for tumn said receiver to said predetermined carrier frequencies, and means for moving said second strip past its associated record-actuated means in synchronism with said first strip, whereby the record-actuated means at the transmitting station and at the receiving station, respectively, are actuated in synchronism to maintain the receiver tuned to the carrier frequency of the transmitter. 2. Apparatus as described in claim 1, in which said differently characterized recordings on said record strips are distinguished by being difierently laterally displaced from each other, and said record-actuated means are selectively reisponsive to the lateral positioning of said record- 3. Apparatus as described in claim 1, in which said record strip comprises a ribbon having longitudinally extending slots therein differently characterized by bein differently laterally positioned on said ribbon, and each said record-actuated means includes a plurality of movable elements each movable to tune its associated generating or receiving means to a different one of said frequencies, and means for selectively moving said elements in accordance with the lateral positioning of the slots in said ribbon. 4. In a system of the type described, including a control station and a movable craft to be controlled thereby , apparatus at said control station comprising an oscillator and tuning means therefor, a first elongated record strip having differently characterized, longitudinally disposed recordings thereon, record-actuated means selectively responsive to different ones of said recordings for tuning said oscillator to predetermined different frequencies, means for moving said record strip past said record-actuated means whereby the frequency of oscillation is changed from time to time in accordance with the recordings on said strip, and means for selectively transmitting radio signals corresponding in frequency to the said frequency of oscillation; apparatus on said movable craft comprising a radio receiver having tuning means tunable to said predetermined frequencies, a second record strip, recordactuated means selectively responsive to different recordings on said second record strip for tuning said receiver to said predetermined frequencies, means for moving said second strip past its associated record-actuated means in synchronism with said first strip whereby the record-actuated means at the control station and On the movable craft, respectively, are actuated in synchronism to maintain said radio receiver tuned to the frequency of oscillation of the transmitter; mechanism on said craft for selectively determining its movement, and means responsive to radio signals received by said radio receiver for controlling said mechanism. 5. Apparatus as described in claim 4, in which said mechanism on saidcraft for selectively determining its movement includes a control element movable by predetermined increments, and means responsive to successive received radio impulses for moving said element by one increment only in response to each separate impulse irrespective of the length of the impulse. 6. Apparatus as described in claim 1, including means at the transmitting station for transmitting radio signals of different frequencies to which said radio receiver tunin means are not tunable, and means coordinated with the recordings on said first strip for indicating at the transmitting station when the transmitting apparatus is tuned to frequencies that are not receivable at the receiving station. HEDY KIESLER MARKEY. GEORGE ANTHEIL.

China pone en marcha su sistema de navegación por satélite


China pone en marcha su sistema de navegación por satélite

Alex Calvo

miércoles, 29 de febrero de 2012 .Desde hace unos días, coincidiendo con la publicación de su nuevo plan quinquenal espacial, China ha activado el sistema de navegación por satélite Beidou. Aunque solamente cubre el país y zonas adyacentes, Beijing confía en alcanzar una capacidad global el año 2020. De momento puede jugar un papel clave en el desarrollo y uso de sistemas de armamento diseñados para obstaculizar el despliegue de fuerzas aeronavales cerca de sus costas, mientras que una vez extendido su alcance a todo el planeta, sería un elemento imprescindible en sus planes para construir una armada oceánica.

El espacio, clave de los planes de Beijing

Desde que el año 1979 China decidió abrirse al mundo y liberalizar gradualmente su economía, como única vía realista para recuperar su liderazgo en Asia, perdido hacía más de un siglo ante la expansión de potencias como Rusia o Gran Bretaña, el país ha dedicado una gran atención al espacio. Ello obedece a diversos motivos.

En primer lugar, una presencia en dicho campo es un elemento fundamental de una de las «cuatro modernizaciones» lanzadas por Zhou Enlai y Deng Xiaoping, la de la ciencia y la tecnología. Aunque China se haya especializado por el momento en la industria ligera en base a la mano de obra no calificada, sus ambiciones a largo plazo son mucho elevadas. Es más, el agotamiento de su modelo productivo la obliga a dar el salto.

En segundo, el pensamiento militar tradicional chino otorga una gran importancia al dominio de las alturas, y el espacio es precisamente «el terreno más elevado». En tercero, Beijing es muy consciente de que el espacio, hoy como durante la Guerra Fría, es fuente de prestigio, y por tanto de «poder blando». Precisamente es en Asia donde tiene lugar actualmente la «carrera espacial» más intensa, con una dura competición entre Beijing, Tokio, y Nueva Delhi, más un cuarto actor, Seúl, rezagado pero que también aspira a estar entre los grandes.

Por todo ello, no nos debe extrañar la magnitud de los planes chinos en el espacio, aunque diversos observadores duden de la viabilidad comercial de Beidou, dada la competencia no solamente norteamericana sino también rusa y europea. Otras voces alertan, sin embargo, del enorme peso de la industria electrónica china, que podría inundar el mercado de productos con receptores para el mismo.

Cinco satélites más este año

Aunque el sistema Beidou ya ha entrado en funcionamiento, su alcance geográfico es por el momento limitado, al disponer solamente de diez satélites, más el once lanzado hace unos días. Sin embargo, China tiene previsto lanzar otros cinco a lo largo del año 2012, acercándose gradualmente a los 35 necesarios para alcanzar una cobertura global, cifra que confía en alcanzar el 2020 a más tardar.

Como en cualquier otro de los ambiciosos planes chinos para la próxima década, la economía del gigante asiático cuelga como una espada de Damocles, dadas las diversas deficiencias estructurales que amenazan con poner fin a 30 años de expansión rápida e ininterrumpida. En caso de parón económico, Beijing se podría ver obligado a sacrificar, o al menos retrasar, algunos de estos planes. Una pregunta que nos podemos hacer es si sería el sistema Beidou uno de los considerados prioritarios, o si, por el contrario, China podría considerarlo prescindible. Las razones indicadas anteriormente hacen pensar que se encontraría entre los proyectos a continuar en caso de crisis económica, aunque quizás circunscribiendo, al menos durante unos años, su alcance geográfico al objeto de recortar costes.

El escudo y la espada: dos usos claves del sistema Beidou

Al comentar las finalidades militares de este sistema de navegación por satélite, es necesario distinguir dos grandes apartados, que se corresponden a grandes rasgos con dos de los objetivos de Beijing. Por un lado la capacidad de prevenir, o al menos hacer muy costoso, un despliegue hostil cerca de sus costas, y por otro la de proyectar fuerza lejos de las mismas.

El primero tiene en el punto de mira sus pretensiones territoriales en el Mar del Sur de China (donde un gran número de pesqueros chinos ya emplean el sistema Beidou), así como la finlandización o idealmente el Anschluss de Taiwán. Okinawa, y las islas más al sur, son también otro objetivo, al tratarse de otra posibles vía hacia mar abierto, ese oscuro objeto de deseo que la geografía y la historia han alejado del alcance de Beijing. En este sentido, disponer de un sistema propio de navegación por satélite es un elemento imprescindible para el despliegue de armas como los misiles de crucero, o el tan temido mísil balístico antibuque.

El conflicto de hace 30 años en el Atlántico Sur enseñó muchas lecciones a Beijing, que continúa siguiendo con lupa la región, por las evidentes similitudes con Taiwán y las Islas Senkaku/Diaoyu. Una de ellas, ilustrada por un error en los planos del aeropuerto de Stanley que dificultó su utilización por las fuerzas aéreas británicas, es la necesidad de contar con información geográfica de calidad y precisión contrastadas.

En relación al segundo, las operaciones contra la piratería y el despliegue de una fragata durante la revuelta libia, aunque modestos, son pasos hacia el desarrollo de una capacidad de proyección aeronaval de alcance mundial, que exige contar con un sistema de navegación propio. Recurrir a tecnologías en manos de otros estados supondría otorgarles un poder de veto sobre su empleo.

¿Aprenderá la Unión Europea la lección?

Ligado a este punto, nos podemos plantear una pregunta final. La Unión Europea sigue adelante con otro competidor del sistema GPS, el denominado Galileo. Aunque destinado a no depender de Estados Unidos, dicho objetivo choca con la presencia china en el proyecto.

¿Cuál será el impacto de la entrada en funcionamiento de Beidou sobre dicha presencia? ¿Perderá Beijing interés en la misma, o lo mantendrá con la esperanza de que abra el camino hacia el tan ansiado fin del embargo europeo sobre la venta de armas a China?

* Alexandre Calvo Cristina Profesor de relaciones internacionales, European University

http://www.ateneadigital.es/RevistaAtenea/REVISTA/articulos/GestionNoticias_7703_ESP.asp