Tormenta solar CEM -Clasificaciones


Fulguración solar

 EYECCIÓN DE MASA CORONAL (cem) 

Los efectos que podría tener la tormenta magnética de este viernes

Wed, 11/10/2017 – 11:07

Llamarada solar: Este viernes 13 al sabado 14 de octubre de 2017 se espera una tormenta, de magnitud 4 en una escala de 10.

Tormenta geomagnetica : el campo magnético terrestre podría sufrir alteraciones desde el 12 y hasta el 15 de este mes.

posibles efectos: no afectará al clima, podría provocar fallos en los dispositivos electrónicos de navegación o telecomunicación y, por tanto, aumentar el riesgo de accidentes. personas más sensibles a estas manifestaciones meteorológicas tendrán más opciones de sufrir molestias físicas, desde dolores de cabeza hasta nerviosismo, irritabilidad, agotamiento o ansiedad.

Sin embargo, Popov reconoce que «resulta imposible predecir con exactitud la manera en que esa tormenta afecta , hay que tener en cuenta tanto su magnitud como «la temperatura ambiente y la presión atmosférica» durante los días que dure el fenómeno.

Fuente: RT

October 9, 2017 @ 00:45 UTC

Solar Update / Coronal Hole

oct9_2017_ch

GEOMAGNETIC STORM IN PROGRESS: G1-class  on Oct. 11th

De acuerdo al evento del dia 9 de octubre se produjo el agujero coronario y a su vez la eyeccion de masa  coronaria, generando  para el 11de octubre una tormenta geomagnetica G1, produciendo auroras boreales que se mantienen de 24 a 48 horas. De incrementarsela actividad solar la tormenta puede alcanzar el nivel G2, lo quw puede ocurrir en Oct. 13th.

 Not much happening on the sun as of late and the visible disk is now currently spotless with region 2683 turning onto the west limb. There is currently no chance for noteworthy Earth facing solar flares.

A solar wind stream flowing from coronal hole #34 is expected to reach Earth by October 11th. Minor (G1) geomagnetic storming will be possible at higher latitudes. More updates in the days ahead. Image courtesy of SDO/AIA.


Para EL 4 DE SEPTIEMBRE De 2017:  CEM clase M,  llamarada solar
Para el 6 de septiembre de 2017:  CEM. X9.3
Para el 7 de septiembre en en latitudes altas y medias en Canadá. se pudo observar intensas auroras boreales.
Para el 8 de septiembre por la mañana con su máxima intensidad a las 8.00 GMT:  Tormenta geomagnetica G4 de nivel 4 (el 5º nivel es el máximo)

En la Tierra  las erupciones solares se clasifican con las letras A, B, C, M o X, siendo X la más potente. Cada letra va seguida de un número del 1 al 9 niveles kp

The Classification of X-ray Solar Flares or «Solar Flare Alphabet Soup»

A solar flare is an explosion on the Sun that happens when energy stored in twisted magnetic fields (usually above sunspots) is suddenly released. Flares produce a burst of radiation across the electromagnetic spectrum, from radio waves to x-rays and gamma-rays. [more information]

Scientists classify solar flares according to their x-ray brightness in the wavelength range 1 to 8 Angstroms. There are 3 categories: X-class flares are big; they are major events that can trigger planet-wide radio blackouts and long-lasting radiation storms. M-class flares are medium-sized; they can cause brief radio blackouts that affect Earth’s polar regions. Minor radiation storms sometimes follow an M-class flare. Compared to X- and M-class events, C-class flares are small with few noticeable consequences here on Earth.

This figure shows a series of solar flares detected by NOAA satellites in July 2000:

Each category for x-ray flares has nine subdivisions ranging from, e.g., C1 to C9, M1 to M9, and X1 to X9. In this figure, the three indicated flares registered (from left to right) X2, M5, and X6. The X6 flare triggered a radiation storm around Earth nicknamed the Bastille Day event.

 Class
Peak (W/m2) beetwen 
1 and 8 Angstroms
 B  I < 10-6
 C  10-6 < = I < 10-5
 M  10-5 < = I < 10-4
 X  I > = 10-4

What is a Solar Flare?

A flare is defined as a sudden, rapid, and intense variation in brightness. A solar flare occurs when magnetic energy that has built up in the solar atmosphere is suddenly released. Radiation is emitted across virtually the entire electromagnetic spectrum, from radio waves at the long wavelength end, through optical emission to x-rays and gamma rays at the short wavelength end. The amount of energy released is the equivalent of millions of 100-megatonhydrogen bombs exploding at the same time! The first solar flare recorded in astronomical literature was on September 1, 1859. Two scientists, Richard C. Carrington and Richard Hodgson, were independently observing sunspots at the time, when they viewed a large flare in white light.

Full Disk Corona with Flare Soft x-ray image of a solar flare on the Sun

As the magnetic energy is being released, particles, including electronsprotons, and heavy nuclei, are heated and accelerated in the solar atmosphere. The energy released during a flare is typically on the order of 1027 ergs per second. Large flares can emit up to 1032 ergs of energy. This energy is ten million times greater than the energy released from a volcanic explosion. On the other hand, it is less than one-tenth of the total energy emitted by the Sun every second.

There are typically three stages to a solar flare. First is the precursor stage, where the release of magnetic energy is triggered. Soft x-ray emission is detected in this stage. In the second or impulsive stage, protons and electrons are accelerated to energies exceeding 1 MeV. During the impulsive stage, radio waves, hard x-rays, and gamma rays are emitted. The gradual build up and decay of soft x-rays can be detected in the third, decay stage. The duration of these stages can be as short as a few seconds or as long as an hour.

Solar flares extend out to the layer of the Sun called the corona. The corona is the outermost atmosphere of the Sun, consisting of highly rarefied gas. This gas normally has a temperature of a few million degrees Kelvin. Inside a flare, the temperature typically reaches 10 or 20 million degrees Kelvin, and can be as high as 100 million degrees Kelvin. The corona is visible in soft x-rays, as in the above image. Notice that the corona is not uniformly bright, but is concentrated around the solar equator in loop-shaped features. These bright loops are located within and connect areas of strong magnetic field called active regions. Sunspots are located within these active regions. Solar flares occur in active regions.

The frequency of flares coincides with the Sun’s eleven year cycle. When the solar cycle is at a minimum, active regions are small and rare and few solar flares are detected. These increase in number as the Sun approaches the maximum part of its cycle. The Sun will reach its next maximum in the year 2011, give or take one year.

Las fulguraciones solares tienen lugar en la cromosfera del astro, calentando plasma a decenas de millones de grados kelvin y acelerando los electrones, protones e iones más pesados resultantes a velocidades cercanas a la de la luz. Además, producen radiación electromagnética en todas las longitudes de onda del espectro electromagnético, desde largas ondas de radio a los más cortos rayos gamma.

El pasado 6 de septiembre la llamarada solar más intensa en al menos 12 años y la octava más potente desde que en 1996 comenzaran a registrarse estos eventos. Junto a la llamarada se produjo además unaeyección de masa coronal, en la que grandes cantidades de plasma (gas a altísimas temperaturas) fueron expulsados «a lomos» del viento solar. Por fortuna, la atmósfera y el campo magnético de la Tierra fueron suficientes como para evitar daños en el planeta.

Se pudieron observar tres llamaradas solares distintas, todas ellas de clase X, que es la de las llamaradas más potentes. La mayor de todas ellas ocurrió a las tres de la tarde del día 6 de septiembre, y alcanzó un nivel considerable de intensidad.

«El Sol está actualmente en lo que llamamos mínimos solar. El número de regiones activas, donde ocurren las llamaradas, es bajo, así que tener llamaradas de tipo X ocurriendo en una región muy pequeña es usual», ha explicado Aaron Reid, otro de los investigadores implicados en este trabajo. «Estas observaciones pueden decirnos cómo y por qué se forman estas llamaradas, de forma que en el futuro podremos predecirlas mejor», ha añadido Reid.

Gracias a los datos recogidos durante aquellos días, los investigadores van a tratar de relacionar las llamaradas con las condiciones de la atmósfera solar, con la intención de hacer mejores predicciones para cuando estos eventos vuelvan a ocurrir en el futuro. Esto es especialmente interesante para la industria más afectada por la meteorología espacial: la de los satélites.

Uno de los problemas de hacer estas predicciones es que las llamaradas solares evolucionan en períodos de tiempo muy cortos. Por ejemplo, las llamaradas de tipo X pueden arrancar y alcanzar su pico de energía en menos de cinco minutos, lo que quiere decir que los observadores, que solo pueden ver una pequeña fracción del Sol con los telescopios más potentes, necesitan un buen puñado de suerte y de habilidad para poder captar los instantes iniciales de las llamaradas.

Las llamaradas solares son los eventos más energéticos del Sistema Solar. Tienen una energía comparable a la de mil millones de bombas de hidrógeno y pueden expulsar plasma a velocidades de 2.000 kilómetros por segundo a través de las eyecciones de masa coronal.

Esto puede tener consecuencias en la Tierra. Las más intensas pueden dañar los satélites y las señales de los GPS, provocar auroras en la Tierra o incluso afectar al tendido eléctrico de las ciudades.

Llamaradas

Eyección de Masa Coronal (CME en inglés). Se trata de un fenómeno habitual en el Sol durante ciertos momentos de su vida, (durante los máximos de actividad solar, que se alcanzan cada 11 años) en los que su campo magnético se sacude y libera la tensión en ciertos puntos. Cuando eso ocurre, el plasma solar se libera de la superficie y sale despedido hacia el espacio, a unas velocidades que pueden ir desde los 20 kilómetros a los 3.200 por segundo.

Esta energía y esta materia pueden tardar en llegar a la Tierra normalmente unos cuatro días, pero durante el evento de Carrington apenas necesitaron unas 17,6 horas.

http://static.googleadsserving.cn/pagead/images/x_button_blue2.svg

Relationship between Kp and the Aurora [ref]

Right: From thousands of observations, Cornell University scientists have determined geographic subpoints for the southern edges of auroral displays. The curves represent four values of the planetary index (Kp). As this index increases, the aurora’s southern edge moves southward.

In this article we briefly explain some of the ideas behind the association of the aurora with geomagnetic activity and a bit about how the ‘K-index’ or ‘K-factor’ works. The aurora is understood to be caused by the interaction of high energy particles (usually electrons) with neutral atoms in the earth’s upper atmosphere. These high energy particles can ‘excite’ (by collisions) valence electrons that are bound to the neutral atom. The ‘excited’ electron can then ‘de-excite’ and return back to its initial, lower energy state, but in the process it releases a photon (a light particle). The combined effect of many photons being released from many atoms results in the aurora display that you see.

The details of how high energy particles are generated during geomagnetic storms constitute an entire discipline of space science in its own right. The basic idea, however, is that the Earth’s magnetic field (let us say the ‘geomagnetic field’) is responding to a outwardly propagating disturbance from the Sun. As the geomagnetic field adjusts to this disturbance, various components of the Earth’s field change form, releasing magnetic energy and thereby accelerating charged particles to high energies. These particles, being charged, are forced to stream along the geomagnetic field lines. Some end up in the upper part of the earth’s neutral atmosphere and the auroral mechanism begins.

The disturbance of the geomagnetic field may also be measured by an instrument called a magnetometer. At our operations center we receive magnetometer data from dozens of observatories in one minute intervals. The data is received at or near to ‘real-time’ and allows us to keep track of the current state of the geomagnetic conditions. In order to reduce the amount of data that our customers have to deal with we convert the magnetometer data into three-hourly indices which give a quantitative, but less detailed measure of the level of geomagnetic activity. The K-index scale has a range from 0 to 9 and is directly related to the maximum amount of fluctuation (relative to a quiet day) in the geomagnetic field over a three-hour interval.

The K-index is therefore updated every three hours and the information is made available to our customers as soon as possible. The K-index is also necessarily tied to a specific geomagnetic observatory. For locations where there are no observatories, one can only estimate what the local K-index would be by looking at data from the nearest observatory, but this would be subject to some errors from time to time because geomagnetic activity is not always spatially homogenous. Another item of interest is that the location of the aurora usually changes geomagnetic latitude as the intensity of the geomagnetic storm changes. The location of the aurora often takes on an ‘oval-like’ shape and is appropriately called the auroral oval. A useful map of the approximate location of the auroral oval as a function of the Kp-index was published in the June 1968 copy Sky & Telescope (see page 348). The Kp index is derived through by an algorithm that essentially averages the K-indices from several stations. Note that as a storm becomes more intense, the edge of the auroral boundary typically moves to lower latitudes.

For further reading we can recommend a couple of books for you. An old, but classic text is The Polar Aurora, Oxford University Press, 1955, by Störmer. A more modern text is The Physics of Space Plasmas, 1991, by George Parks. If you are interested in real-time reporting of geomagnetic activity please make use of our 24-hour/day, 7 day/week services. We have an internet home page address (/), and a recorded message which is updated every three hours or as major activity occurs (303-497-3235). You can also reach us at 303-497-3204. We hope that you find this information helpful. If you have some further questions please don’t hesitate to let us know. Best wishes ! Chris Balch (cbalch@sec.noaa.gov)

CORONAL HOLE HIGH SPEED STREAMS (CH HSS)

CORONAL HOLE HIGH SPEED STREAMS (CH HSS)

published: Monday, September 25, 2017 21:17 UTC

Coronal holes appear as dark areas in the solar corona in extreme ultraviolet (EUV) and soft x-ray solar images. They appear dark because they are cooler, less dense regions than the surrounding plasma and are regions of open, unipolar magnetic fields. This open, magnetic field line structure allows the solar wind to escape more readily into space, resulting in streams of relatively fast solar wind and is often referred to as a high speed stream in the context of analysis of structures in interplanetary space.

Coronal holes can develop at any time and location on the Sun, but are more common and persistent during the years around solar minimum. The more persistent coronal holes can sometimes last through several solar rotations (27-day periods). Coronal holes are most prevalent and stable at the solar north and south poles; but these polar holes can grow and expand to lower solar latitudes. It is also possible for coronal holes to develop in isolation from the polar holes; or for an extension of a polar hole to split off and become an isolated structure. Persistent coronal holes are long-lasting sources for high speed solar wind streams. As the high speed stream interacts with the relatively slower ambient solar wind, a compression region forms, known as a co-rotating interaction region (CIR). From the perspective of a fixed observer in interplanetary space, the CIR will be seen to lead the coronal hole high speed stream (CH HSS).

The CIR can result in particle density enhancement and interplanetary magnetic field (IMF) strength increases preceding onset of the CH HSS. As the CH HSS begins to arrive at Earth, solar wind speed and temperature increase, while particle density begins to decrease. After passage of the CIR and upon transition into the CH HSS flow, the overall IMF strength will normally begin to slowly weaken.

Generally, coronal holes located at or near the solar equator are most likely to result in any CIR passage and/or higher solar wind speeds at Earth. Strong CIRs and the faster CH HSS can impact Earth’s magnetosphere enough to cause periods of geomagnetic storming to the G1-G2 (Minor to Moderate) levels; although rarer cases of stronger storming may also occur. Geomagnetic storms are classified using a five-level NOAA Space Weather Scale. The larger and more expansive coronal holes can often be a source for high solar wind speeds that buffet Earth for many days.

Because of their potential for escalated geomagnetic activity and possible storming (G1 or higher), forecasters analyze coronal holes closely and also note them on the daily synoptic drawing. SWPC forecasters take into account any possible effects of CIR and CH HSS activity when forecasting the anticipated levels of overall planetary geomagnetic response for each 3-hour synoptic period over the next three days; as detailed in the 3-day forecast. Additionally, any predicted CIR or CH HSS influences are explained in more detail in the forecast discussion.

*IMAGE courtesy of NASA

http://www.swpc.noaa.gov/news/coronal-hole-high-speed-streams-ch-hss

 

Deja una respuesta

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Salir /  Cambiar )

Google photo

Estás comentando usando tu cuenta de Google. Salir /  Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Salir /  Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Salir /  Cambiar )

Conectando a %s

A %d blogueros les gusta esto: